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Commuting tensor operators and the state labelling problem 
for SO(4) 3 P 

R P Bickerstaff and B G Wybourne 
Physics Department, University of Canterbury, Christchurch, New Zealand 

Received 21 September 1977 

Abstract. The application of irreducible tensor techniques to state labelling problems is 
described. For the pentahedral subgroup of SO(4) it is demonstrated that a solution to the 
labelling problem using a Set of mutually commuting operators is not possible if we 
demand that each of the operators transform irreducibly under SO(4). 

1. Introduction 

If one is contemplating using a set of mutually commuting operators to resolve the 
state labelling problem, it is of some importance to know how many operators are 
required in the set and indeed even whether a suitable commuting set exists. To this 
end we have investigated the labelling problem for S 0 ( 4 ) > P  where P is the penta- 
hedral subgroup of SO(4). We have found that a solution in terms of a set of 
commuting operators each symmetrised with respect to an irreducible representation 
(irrep) of SO(4) is not possible. 

In obtaining our results we have made extensive use of group tensor operators and 
Kronecker product theory. While these techniques are quite standard, their appli- 
cation to the state labelling problem is somewhat novel. We therefore think it 
appropriate to briefly discuss the relationship between labelling operators and group 
tensors and to present a few simple results (including striking symmetries among the 
eigenvalues) which highlight the insight which such an approach gives. Armed with 
these general results we are then able to proceed to discuss the specific case SO(4) 2 P, 
transforming to a canonical basis for actual calculations. 

At the outset we restrict our labelling considerations to what may be termed 
physically appropriate bases for the Hilbert space, i.e. those which display the sym- 
metry of the relevant Hamiltonian. Thus if a hierarchy of groups G is evident, 
then using Dirac’s bra-ket notation we wish to write the basis states as the kets 
Ir a y i) where r is an irrep of G, y an irrep of H, i an extra label needed if y is greater 
than one-dimensional and a another additional label required in case of branching 
multiplicity in the reduction of r to y under restriction of the operations of G to those 
of H. 

The irrep labels r and y are normally fairly easy to assign and for the label i we can 
use further subgroups to provide labels if necessary. However, the resolution of the 
branching multiplicity label a is usually a more difficult task. Our aim will be to 
resolve it by using the eigenvalues of a set of mutually commuting operators. We 
emphasise that we are concerned only with operators which resolve the branching 
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multiplicity and not necessarily with operators which completely distinguish every 
partner of r. 

Suppose that G is a Lie group, then if the labelling operators are constructed from 
the generators of G they will commute with the Casimir invariants of G (which of 
course may be used to label r) and also with the physical Hamiltonian. Such operators 
might be the symmetric polynomials which are homogeneous of degree n in the 
generators. (We shall see later that the homogeneous condition is an undesirable 
restriction.) These operators belong to the universal enveloping algebra, U of the Lie 
algebra of G. In order for them to be capable of resolving the branching multiplicity it 
is necessary (and we shall see soon why) that they be invariant under H. 

The enumeration of these invariants is closely related to Hilbert’s fourteenth 
problem. Briefly, this poses the question: ‘If G acts linearly on the variables 
xl, . . . , x,, are the H-invariant polynomials in these variables finitely generated?’ The 
answer in general is negative (Nagata 1958) but if H is a finite or compact group then 
the answer is in the affirmative. A set of invariants from which all others can be 
constructed is termed an integrity basis (Weyl 1946). The concept of an integrity basis 
for invariant operators was examined by Judd et a1 (1974). They showed that there 
was a one-to-one correspondence between invariants in U and invariants in the space 
of polynomials in the variables xl, , . . , x,. The integrity basis for operators, though, is 
in general smaller because of the commutation relations that exist among the genera- 
tors. 

Recent use of invariant operators to resolve labelling problems includes the work 
of Patera and Winternitz (1973, 1976) and Bickerstaff and Wybourne (1976) on the 
finite subgroups of SO(3), Judd et a1 (1974) on SU(3)3S0(3)  and Quesne (1976, 
1977) on SU(4) 3 SU(2) X SU(2). Except for the latter, these rely on a single operator 
to resolve branching multiplicities. A rather vaguely stated theorem of Racah (1951) 
purportedly tells us when a single operator is inadequate for labelling purposes. 
Because of this theorem, S0(4)= P has generally been thought to be a case of a ‘two 
missing labels problem.’ We shall see from our study of this example that Racah’s 
theorem does have limited application. 

As we have already mentioned, our approach uses group tensors. These are 
manipulated by the Wigner-Racah algebra which has been generalised for finite or 
compact groups by Derome and Sharp (1965), Derome (1966) and Butler (1975). 
Butler’s work pays particular attention to phase problems and consistency of notation. 
The notation we shall use to describe the various aspects of the generalised Wigner- 
Racah algebra follows that suggested by Butler in his conclusion. 

2. The labelling operators as group tensors 

The homogeneous polynomials in the generators of G act linearly on the Hilbert 
space. Also they can be symmetrised so 3s to transform irreducibly under the actions 
of G. Accordingly they behave as group tensors (see Butler 1975). We shall write the 
symmetrised labelling operators as T“:; where ~t is the degree of the polynomial, r is 
an irrep of G, a is a branching multiplicity label and 0 denotes the identity irrep of H 
(a is an extra label in case there is more than one invariant of degree n with the same 
transformation properties). 

As is well known, the generators form a vector space over the field of complex 
numbers. Construction of homogeneous polynomials in these generators is closely 
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related to forming tensor powers of this vector space. Further, the vector space will 
transform as a representation r, of G. (r, will usually be irreducible, but not always.) 
Thus the irreps of G under which the homogeneous polynomials of degree n may 
transform are those occurring in the nth Kronecker powers of r,. 

However, the operators in U are symmetric polynomials and therefore they can 
only transform according to representations which occur in the totally symmetric part 
of the Kronecker powers of The decomposition of the various symmetry parts of 
the Kronecker powers into irreps may be readily found using Littlewood's (1950) 
algebra of plethysm. Hence, the symmetric invariants transform according to the 
irreps occurring in rg 0 {n}. The plethysm may be evaluated using the methods 
described by Wybourne (1970a) and Butler and King (1973). (Butler and Wybourne 
(1971) have compiled a useful table of plethysms.) If there are r generators then the 
degree of this plethysm is ( n  + r -  l ) ! / n ! ( r  - l)! which gives the total number of 
symmetric nth-order polynomials in the generators-a result familiar to classical 
invariant theory. 

In order to enumerate the symmetric invariants we now need only know the 
branching rules for the restriction G+H.  There are many available methods for 
evaluating branching rules but several of the more common ones are tedious and we 
draw attention to the use of S-functions and the work of King (1975). 

Before proceeding further we note that all of the compact Lie groups are quasi- 
ambivalent and Butler and King (1974), Butler (1975) and Butler and Wybourne 
(1976) have discussed various simplifying choices in the Wigner-Racah algebra which 
are possible for these groups. Since we shall only be considering compact Lie groups 
we shall assume these simplifications in what follows. 

3. Properties of matrix elements 

Any group tensor operator obeys the Wigner-Eckart theorem (Butler 1975) and this 
is true in particular of the labelling operators. Also, since the labelling operators are 
constructed from the generators of G they are diagonal in the irreps of G. Further 
simplifications in the Wigner-Eckart theorem occur because they are invariant under 
the subgroup H. Using the Racah factorisation lemma for the 2-jm and 3-jm symbols 
and the definition and orthogonality of the 2-jm symbols for H (and simplifications in 
the 2-jm factors noted by Butler and Wybourne 1976) we obtain 

where * denotes the contragredient label and r is a Kronecker product multiplicity 
label. This expression, in terms of the 2-jm and 3-jm factors shows that the invariants 
are diagonal in the irrep labels of G and H and not only diagonal in any additional 
labels at a lower group level but also the values of the diagonal matrix elements are 
entirely independent of them. Thus the eigenvalues of an invariant operating on the 
rl module are degenerate with degeneracies at least equal to the dimensions of the 
irreps y1 of H which appear in the decomposition of rl under the restriction G +H. 
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This agrees of course with what we expect from Schur's lemma and is the reason why 
we want to consider invariants as labelling operators. 

If the eigenvalues are different for different branching multiplicity labels then the 
problem is solved. It is not obvious that this will be so, however. Indeed if the 
operator is of high enough degree in the generators then it is clear that such an 
operator could well have all zero eigenvalues for some modules because the 
Kronecker product condition r:' x r x rl =I 0 might not be satisfied. Casimir invariants 
of H would also be unsuitable. 

Let us examine the eigenvalue spectrum further. 
The sum of the eigenvalues is given by the trace of the invariant. For the rl 

module we have 

From the orthogonality properties of the 3-jm factors and the definition of the 2-jm 
factor (remembering that it is chosen real) it is simple to deduce that 

Changing the order of summation in equation ( 2 )  and using equation ( 3 )  we obtain the 
result that 

Tr(T" $) = Srolrl/+1/2(T11(T""rllr1) (4) 
which shows that the invariants are traceless unless they transform as the identity irrep 
of G. Indeed, exactly the same result can be shown to be true for any tensor operator 
(and not just invariants), as is well known. The proof is a trivial modification of the 
above, using the orthogonality properties of the 3-jm symbols rather than the 3-jm 
factors, and is a generalisation to all finite or compact groups of the proof of Fano and 
Racah (1959) for the angular momentum tensors. 

What about the sum of the moduli of the eigenvalues? We deduce this from the 
trace of (T"$) '  (T"::). It is not difficult to show that 

and again this result holds for all tensors. It is clear that similar results could be found 
for higher degree products of the eigenvalues. 

We come now to the implications of permutation symmetries of the 2-jm and 3-jm 
factors. Using these symmetries in equation ( 1 )  and the fact that the 2-j symbols are 
of norm unity we find that 

(rT U T  7:' ilIT"zLIr:' a:' yTi1) 

Except in the special case I'T = rl = r, the 3-j symbol {(13),  rT r rl}rt can be chosen 
to be {rTTrl r } S ,  where the 3-j phase {r:'rrl r } = k l .  Thus if rl=rT 
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and if the 3-j phase can be chosen the same for all r we have 

and we see that symmetries may exist among the eigenvalues. This equation can only 
be true in the special case rl = r if r is a simple phase representation, i.e. the 
Kronecker cube r x r x r does not contain the identity irrep in the mixed symmetry 
part (Butler and King 1974). 

Because of this simple result we should not be surprised at the symmetries 
appearing in the tables of Judd et a1 (1974), especially when bearing in mind 
Derome's (1967) proof that SU(3) is a simple phase group. 

Further, we can deduce from equation (7) that if an invariant is to resolve the 
branching multiplicity then it must do so in a definite manner. For example if y1 = yT 
and {rl T1){T1 r rl 1) = +1 then the multiplicity index must be self-contragredient 
whereas if there is a phase change it cannot unless the eigenvalue is zero. The 
equations for the sum of the eigenvalues and the sum of their moduli squared ensure 
in some cases that the desired resolution is made. Thus if {rl rl){rl r rl 1) = -1 then 
the branching multiplicity must be resolved, at least up to multiplicities of three, and 
the eigenvalues will occur in + and - pairs, and a zero if the multiplicity is odd. This 
is, of course, only true if the Kronecker product condition is satisfied. 

To date, a proof of complete resolution is still lacking. 

4. Hermiticity 

It is desirable to use Hermitian operators for labelling purposes since their eigenvalues 
are then real and their eigenvectors can be chosen to be orthogonal even when there is 
degeneracy among the eigenvalues. We wish to know whether it is always possible to 
choose our invariants to be Hermitian and still retain our various conventions, 
especially that of Butler's (1975) 'sensible' phase for the 3-jm symbols. To investigate 
this we note that if an invariant is Hermitian then its matrix elements must be related 
by 

(rl a l  y1 ili~":;tr2 a2 y 2  i2)=(r2 a2 y 2  i21~":Llr l  a l  y1 il)*. (8) 

The right-hand side of equation (8) we can evaluate using equation (1) and applying 
the Derome-Sharp lemma to the 3-jm factor (Butler and Wybourne 1976, equation 
(38)). Use of permutational symmetries and other properties indicates that it is 
unlikely that an equality exists. However, it can be seen that the following are a 
sufficient set of conditions for the invariant to be chosen Hermitian: 

This is normally only true if r = r* and a = a* but in practice can usually be readily 
satisfied. (Anyway, we note that when the reduction r+ 0 is not multiplicity-free then 
the invariants T":: are not in general suitable as labelling operators because of the 
symmetry considerations of the last section.) 



236 R P Bickerstaff and B G Wybourne 

( b )  The reduced matrix element is either pure real or pure imaginary, i.e. 

where U = *l. 

for every irrep rl of G. 

several groups of interest. 
While these conditions may appear rather stringent they can in fact be satisfied for 

5. Independence of the invariants 

In contrast with classical invariant theory, the product and commutator of two invari- 
ant operators yield sums of operators of varying degrees in the generators (cf the proof 
by Judd et a1 (1974) of a finite integrity basis). It is obvious that these are also 
invariants and again that they belong to U. We wish to know what invariants will 
occur in such products or commutators. 

The Wigner-Racah algebra may be used to find the product of two invariants, 
a10 and T"z$2 say, by comparing their joint action on an arbitrary ket IF, a, yx i,) 

with the action of other operators, T"::. Recalling that the operators are linear we 
have 

T"1$1T"2$21T, a, yx i , )  

TII a r 

n n r  
= E ,  lr, a, yz iz)(rx a, yZ i,lT l a : o l / r x  ay yy i,) 

a Y Y Y t Y  
azyzl, 

x(r, ay yY iyiTf12:;:2irx a, yx i x ) .  (9)  
We can evaluate this expression using the Wigner-Eckart theorem and comparison 
with the action of T"$ is then made by using a 6- j  symbol (again we adhere to 
Butler's (1975) definitions). The result can be interpreted as 
T"iairi T"~"2~2 

a10 a20 

where the [T"1a1r1T"2P2r2]:\ are tensor operators related to the T":: by 

S "a 

and possessing reduced matrix elements given by 
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A similar sort of result can be found for the commutator by interchanging the order of 
the product. Thus we find that 

where the reduced matrix elements of [T"za2r2T"1"1r1]z! may be deduced from equa- 
tion (12) and the T"$ arising in the commutator are given by 

(In these expressions the sum over n ranges at most from 0 to nl + 112.) 

Unfortunately the summation over n and a means that the invariants which may 
arise are not uniquely determined. However, it is clear that we can regard some 
invariants as being polynomially dependent on others via such constructions. Of 
course, from any product or commutator we can only select one term as being 
dependent and we would normally choose that which is of highest degree in the 
generators and which transforms as the representation of greatest weight. 

We point out that equations (10) and (13) require resolutions of both branching 
and product multiplicities. However, for the purpose of establishing the indepen- 
dence of the invariants we may make an arbitrary resolution of both such that the 
summation over either involves only one term. We note that this means of resolving 
the multiplicity would not in general yield orthogonal bases. If desired though, an 
orthogonal basis could be constructed via the Gram-Schmidt procedure. 

Lastly we mention that redundancies may occur in eliminating independent 
invariants. For instance three different constructions might only yield two linearly 
independent invariants. Such redundancies must arise if there are more ways of 
constructing invariants transforming as the irrep r than is the dimension of the 
invariant subspace transforming as r since, if we already have a number of linearly 
independent invariants equal to the dimension of the invariant subspace then these 
are a basis for the subspace and any further invariants must be linear combinations of 
them. 

6. The pentahedral subgroup of SO(4) 

We come now to the task of applying the tensor operator method to a specific 
example. The one that we have chosen is the restriction of SO(4) to one of its finite 
subgroups, namely the pentahedral group. First let us briefly describe this group and 
the nature of the labelling problem. 

A regular four-simplex is the four-dimensional analogue of the tetrahedron in 
three dimensions and the equilateral triangle in two dimensions. By virtue of this 
figure having five faces it is known as a pentahedron. We can construct a pentahedron 
in four-dimensional Euclidean space, E4 by adjoining to a tetrahedron in three- 
dimensional Euclidean space, E3 a fifth vertex in a new fourth dimension. 
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Thus it is elementary to show that if we begin with a tetrahedron having the x3 axis 
an axis of three-fold symmetry then the five points 

1 (o,o, 0,  11, ( 0 ~ 0 ,  JE, -a>, ( J ~ , o ,  -J& -z), 

(- J&, Ji, - J& - $) and (- J&, - J?, - J& - $) 

are the vertices of a pentahedron lying on the unit hypersphere with centre at the 
origin. The inverted figure obtained by negating the fourth coordinate is also a 
solution. If we started instead with a tetrahedron have the xl ,  x2 and x3 axes as axes of 
two-fold symmetry then we would find that the points 

are also the vertices of a pentahedron and again the inverted figure can be constructed 
from the same tetrahedron. Clearly there are an infinite number of ways of embed- 
ding a pentahedron in E4. 

It is not difficult to deduce a set of matrices which permute the vertices of a 
pentahedron amongst themselves. These symmetry operations, which are elements of 
S0(4), form a group isomorphic to the alternating group on five objects, AS. It is this 
symmetry group which we call the pentahedral group P. 

The symmetry group of an icosahedron (or a dodecahedron) in E3 is also iso- 
morphic to A5 (Klein 1884). Now an icosahedron can also be embedded in E4 simply 
by adjoining a constant fourth coordinate to each of its twelve vertices. The embed- 
ding of the corresponding icosahedral group, I in SO(4) is however distinct in that the 
branching rules are different for the two cases. We can show the two reductions 
schematically as follows: 

SO(4) SO(4) I .1 

.1 

.1 .1 

SO(3) x SO(1) 

(I X SO(1))z A5 P s A S  

(TxSO(I))=Aq (Tx SO(l))=Aq 

icosahedron pentahedron 

where SO(1) is the trivial group consisting only of the identity operation on the fourth 
coordinate. Obviously SO(3) X SO(1) is isomorphic to SO(3) and similarly for I x 
SO(1) and TxSO(1). Note that one group reduction can be performed via SO(3) 
while the other cannot and also that the same tetrahedral group, T can be chosen in 
both cases. We leave further discussion of the branching rules to the next section. 

7. Wigner-Racah algebra for SO(4) 3 P 

We label the irreps of SO(4) in the normal fashion by [ p q ] ,  where p and q are integers 
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for true irreps and half-(odd) integers for spin irreps. The irreps are of dimension 

I[P411= (P + 1)2-q2.  ( 1 5 )  
Wybourne and Butler (1969) have used a 2 : 1 homomorphism between SO(4)  and the 
double binary full linear group GL(2), which results in the correspondences 

[ab] +{a + b}{a - b}’ 

{a>{b}’+ [%a + b) ,  %a - b)l ,  

(16a)  

(166)  

along with the algebra of S-functions to obtain a formula for the reduction of the 
Kronecker products of SO(4). Their result is 

t u  

[ab][cd]= 1 [ a + c - a - / 3 , b + d - a + / 3 ]  (17) 
a=o p=o 

where t is the lesser of (a  + 6 )  and (c + d )  and U is the lesser of ( a  - b )  and ( c  - d) .  
Our notation for the irreps of P follows that of Griffith (1961) for the icosahedral 

group. Griffith has given the reduction of the Kronecker products for these irreps. 
There are several ways of calculating the branching rules for S0(4 )+  P. We have 

found the method of Backhouse and Gard (1974) to be a particularly simple one. 
They have noted an automorphism which they call - (tilde) on the character ring of 
A5 and have used this, along with the known branching rules for S0(3 )+  I, to perform 
the reduction of the irreps of SO(4) to those of P. Their prescription is 

The effect of - is simply to interchange TI  for T2 and E’ for E”. Thus we find for 
example that under S0(4 )+  P 

[42] + A+T1 +T*+U + 2V 

whereas under S0(4)+ SO(3) + I, since under S0(4 )+  SO(3) 

[MI + [PI + [ P  - 11 + [ P  -21 +. . . + [I4119 
we have 

[42]+[4]+[3]+[2]+T2+2U+2V. 

It is clear that since the branching rules are different in the two cases then the 
Wigner-Racah algebra is different, even though the groups are isomorphic. We point 
out that the branching multiplicity arising in S0(4)+ S 0 ( 3 ) +  I has been essentially 
resolved by us previously (Bickerstaff and Wybourne 1976) and emphasise that the 
pentahedral subgroup of S0(4 ) ,  in which we are currently interested, poses a distinct 
labelling problem. 

In order to apply the tensor operator technique we need to know the values of the 
2-j  and 3-j symbols and 2-jm factors that will arise. To begin with we note that SO(4)  
is simply reducible and therefore there is no multiplicity in the Kronecker products of 
its irreps and also the irreps are all self-contragredient, i.e. [pq]* = [pq].  

Butler and King (1974) have shown that we may choose the 2-j symbol {[pq][pq]} 
to be +1 for true irreps and -1 for spin irreps. Therefore we may write 
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Because there is no product multiplicity, the 3-j symbol {T, [p1q1][p2q2][p3q3]}11 
can always be chosen +1 for even permutations and to be the 3-j phase {[plql] 
[p2q2][p3q3]} for odd permutations, even when the irreps are all equal. To obtain this 
phase we need only consider the case where two of the irreps are equal, [plql] = [p2q2] 
say, and resolve the Kronecker square of this irrep into its symmetric and antisym- 
metric parts. This can be done via the plethysms [p1q1]O(2} and [p1q1]O(l2) 
respectively. Consider the latter. Using the correspondence (16a) and the rules of 
plethysm we have 

The plethysm {m} 0 {2} is given by 

(22) 
{0}+{4}+{8}+. . .+{2m} m even 
{2}+{6}+{10}+. . .+{2m} m odd {m) 0 (2) = ( 

and similarly we have 

(23) 
{0}+{4}+{8}+. . .+{2m-2}  m odd 

im}@{121={{2}+{6}+{10}+. . .+{2m-2} m even. 

Using equations (22) and (23) in equation (21), expanding the terms and transforming 
back to irreps of SO(4) via the correspondence (166) we obtain those irreps [p’q’] in 
the antisymmetric part of the Kronecker square. All other irreps in the Kronecker 
square must be contained in the symmetric part. The result divides the Kronecker 
square very neatly and allows us to choose the 3-j phase for both spin and true irreps 
to be 

(Note that the Kronecker product of spin irreps only contains true irreps and therefore 
the sum p1 + p 2  +p3 is always an integer.) 

The only restriction on the phases of the 2-jm factors is their permutational 
symmetry relation (Butler and Wybourne 1976) 

where we have used the fact that the irreps of P are also self-contragredient. Now the 
true irreps of P are all orthogonal while the spin irreps are all symplectic (see Butler 
and King 1974 and, for instance, Smith and Wybourne 1967) and therefore we have 
that the 2-j symbol { y y }  for P is +1 for true irreps and -1 for spin irreps. We have 
already noted that the same choice can be made for SO(4) and since the branching 
rules for S0(4)+ P yield only true irreps of P if the irrep of SO(4) is true and only spin 
irreps of P if the irrep of SO(4) is a spin irrep we can choose all 2-jm factors for 
S0(4 )1P  to be +l .  

In order to obtain quantitative results we also need to know the 3-jm factors. 
However, these cannot be calculated without assuming a resolution of the branching 
multiplicity-which defeats our purpose. Therefore we shall transform to the canoni- 
cal basis SO(4) =) SO(3) 3 SO(2) for numerical work. The coupling theory for this 
chain is known (Biedenharn 1961) and the definition of the canonical tensor operators 
we employ is that of Wybourne (1970b). 
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For simply reducible groups, the value of the reduced matrix elements that one 
uses is immaterial as regards the labelling problem. It should suffice to say here 
merely that we have chosen them to be complex by including a factor (i)”. This 
ensures that the invariant operators are always Hermitian. 

8. Enumeration of the symmetric invariants 

The six generators of SO(4) span the two irreps [ l l ]  and [ l -  11 of SO(4). Hence the 
invariant operators within the universal enveloping algebra of SO(4) transform as 
representations occurring in ([ 111 + [ 1 - 11) O {n}. We can evaluate this plethysm after 
first using the correspondence (16a) and the rules of plethysm to obtain 

(26) 
m=O 

Then, substituting equation (22) into this expression, expanding, re-arranging terms 
and using the correspondence (166) we arrive at the surprisingly simple result 

We note that the symmetric parts of the Kronecker powers of [ l l ]  + [ l -  11 only 
contain irreps [pq] for which p +q is even and that these occur in a complete and 
systematic fashion. Using the branching rules (18) it is now possible to Write down all 
the nth-order scalars under P for any value of n. 

An alternative method of enumerating the symmetric invariants is to note that 
under the restriction S0(4)+P the irreps [ l l ]  and [l-11 decompose as T2 and TI  
respectively. Thus the plethysm ([ 111 + [ 1 - 11) 0 { n }  is equivalent to 

which is easily evaluated by the method of Smith and Wybourne (1967). Reduction of 
the Kronecker products then yields the invariants directly. However, it requires a 
little more thought to derive the irreps of SO(4) under which they transform. 

It is convenient at this stage to make a comment about the form of the Kronecker 
squares of SO(4) irreps. From equation (17) the Kronecker square is given by 

P+q P - 4  

a = O  p=o  
bqIX2=  c c Pp-a -P92q-a+Pl .  (29) 

Thus the irreps [P’q’] occurring in the Kronecker square are those for which 

p ’  +q‘ = 2(p + 4)- 2a (30) 
and since p +q  and a are both always integers the sum p ’ + 4 ’  is always even. Hence 
those irreps [p’q’] for which p’+q’ is odd can never be contained in the Kronecker 
square of any irrep [pq] and therefore subgroup scalars symmetrised with respect to 
such an irrep could not be used as labelling operators, since their matrix elements 
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would always be zero. This precisely coincides with those operators which cannot be 
constructed from the symmetric parts of the Kronecker powers of the generators of 
SO(4). 

9. An integrity basis for pentahedral invariants 

An invariant that can be resolved as a product or commutator of other invariants may 
possess unexpected relationships between its eigenvalues, but otherwise there is little 
reason for preferring an integrity basis member, ahead of other invariants, for 
labelling purposes. Nevertheless we shall attempt to find an integrity basis for the 
pentahedral invariants within the universal enveloping algebra of SO(4) so as to 
demonstrate the application of the tensor operator method outlined earlier. 

Recall that we said that the method as given did not allow any precise statements 
to be made regarding the independence of invariants. However, we can still use it to 
make some good guesses. For instance the two sixth-order invariants T6"[4001 and 
T6p'4001 are obviously just products of the fourth-order invariant T4'400' with the two 
Casimir invariants T2"[$01 and T2p[oo1 0 . We may proceed in a like manner to construct 
most of the other invariants as fully-stretched products of just a few remaining 
invariants, which we term elementary scalars. These we tabulate in table 1. Thus all 
invariants can be expressed as a fully-stretched polynomial in these elementary 
scalars. 

The use of commutators considerably reduces the number of invariants which 
might be considered independent. We note that for SO(4) the coupled tensors 
[ T n i U ~ [ P i q i l T n z " z [ P ~ ~ z l  [Wl and [ T ~ Z " Z ~ P Z ~ Z ] T ~ ~ ~ ~ ~ P I ~ ~ I  ] [Wl are equivalent and therefore the I a0 

Table 1. Elementary scalars for SO(4) 3 P. 

Degree in Irreps of SO(4) under which Total Number of 
the SO(4) the elementary scalars number of elementary 
generators transform symmetric scalars 

scalars 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

[OOI 1 

a[001, P[OOI 2 
0 

0 
[401, [4 * 21 6 

0 
[bo], [6* 21, [6 * 41, [6 * 61 17 

[8*61 36 
[9*1], [9*3]a, [9*3]b, [9*5], [9*7] 18 

[11*7], [11*9] 46 
- 141 

- 246 

- ,406 
358 
66 1 

- 

- 

- 

[7*11, [7*31 4 

[10*10] 74 

[13*11] 102 

[15*15] 202 

- 
- 

1 
0 
2 
0 
3 
0 
7 
4 
2 

10 
2 
4 
0 
2 
0 
2 
0 
0 
0 
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commutation relation (13) simplifies to 

[ T”Pl[31, ~ n z a z ~ P z % l  a20 1 

Using the commutation relations together with some further, previously unused, 
products we are able to deduce that a minimum integrity basis (it is not unique) 
probably consists of the six operators T4[400’, T4[4,21, T414-’] 0 ,  T61601 0 1  T6[6O6’, T6“? and 
the two Casimir invariants. Further wittling down of the size of the integrity basis 
would involve constructing these operators from higher-order ones-a process which 
we would view with suspicion. 

Although there is at present a lack of rigour associated with this technique it 
should be clear that it possesses great potential for providing a rapid and simple means 
of finding an integrity basis and is certainly worthy of some effort being aimed at its 
refinement. 

10. The choice of labelling operators 

Any SO(4) operator capable of resolving the branching multiplicity in the reduction 
S0(4)+P must not have all zero matrix elements within any module [Pq] for which 
branching multiplicity occurs. If the labelling operator is symmetrised with respect to 
the irrep [p‘q’] of SO(4) this means that [p’q‘] must be contained in the Kronecker 
square of Ip4]. We wish to find what restrictions there are on the values of p ’  and 4‘ in 
order that the condition 

[P41X2 = [P’4’1 

can be satisfied for (almost) any irrep [ p q ] .  From the formula (29) for the Kronecker 
square we can deduce that we must have 

Now if 4 = p or q = - p  then we can see that the only operators capable of resolving a 
branching multiplicity are those symmetrised with respect to the irreps [p ’p ’ ]  or 
I p ’ - p ’ ]  respectively where p ‘ s  2 p .  It is clear from the commutation relation (31) and 
the form of the Kronecker product that such a pair of operators will always commute. 
Sometimes one operator would perform the resolution, sometimes the other and 
sometimes both simultaneously. 

However, the lowest-order symmetric invariants of this form are T6[6,6] and 
T6[6i61. It follows immediately from the above conditions that this pair of commuting 
operators does not suffice to resolve the labelling problem in all cases since the 
Kronecker squares of the irreps [40], [41], [4- 11, [50], [$$I, [Z-i], [$$I, [$-$I, [Si] and 
[$-$I do not contain either the [66] irrep or the [6-61 irrep and yet they all exhibit 
branching multiplicity on reduction to irreps of P. The commuting symmetric invari- 
ants T6[6,6] and T6[6-61 o may come remarkably close to completely resolving the 
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labelling problem but they fail in these ten cases. Higher-order commuting pairs such 

It is easy to determine what other symmetric invariants do satisfy the Kronecker 
product condition for these irreps. The only ones suitable in all cases are those 
transforming as [40] (in particular T4[;O1) though certain pairs ( T4':], T4[4-21 and 

) occur in such a way that one or the other of the pair is always present. 
None of these commute with T6'6,6] and T6[6G61 though. Hence we have demonstrated 
that it is not possible to resolve the labelling problem for S0(4)+P via a set of 
commuting invariants each of which transforms irreducibly under S0(4)!  

Consider then linear combinations of irreducible tensors. It is immediately 
obvious that a single operator such as 

and ~ 1 0 [ 1 0 - 1 0 1  ~ 6 [ 6 6 1  10[10- 101 , and T o etcfare even worse. as T10[10101 
0 

~ 6 [ 6 2 1  ~ 6 C 6 - 2 1  , 

where a, b, c are coefficients, might alone suffice. (Note that this operator is not of 
homogeneous degree in the generators.) Other possibilities include 

In the event of a single such operator resolving the branching multiplicity it would be 
patently pointless searching for other operators which commute with it. 

Let us pause for a moment to consider this new line of thought. We are reminded 
of perturbation theory and level splitting. If the symmetry group of some zero-order 
Hamiltonian was SO(4) and a perturbation term invariant under P was present, then 
this perturbation term could be expanded in terms of SO(4) irreducible tensors which 
were invariant under P. It could well have a form very similar to one of the proposed 
labelling operators. In the absence of accidental degeneracy, such a perturbation 
Hamiltonian would fully resolve the branching multiplicities. This suggests that a 
single linear combination of irreducible tensors is indeed the best approach to a 
resolution of the branching multiplicity. 

To test our hypothesis we calculate some of the eigenvalues of the first operator 
proposed. The transformation coefficients of the irreducible tensors may be readily 
calculated once it is noticed that the same tetrahedral group may be embedded in both 
chains SO(4) 3 P and SO(4) =) SO(3) 3 I. We know the transformation coefficients for 
the tetrahedral invariants (Bickerstaff and Wybourne 1976) and since the pentahedral 
invariants must be linear combinations of tetrahedral invariants we can deduce their 
expansions in the canonical basis by diagonalising an arbitrary linear combination and 
adjusting the coefficients so as to force the correct degeneracy. The easiest case is to 
diagonalise T4[4,21 within the module [21]. We obtain two solutions, indicative of two 
possible orientations of the same tetrahedron within the pentahedron. A consistent 
set of transformation coefficients for all the invariants may be calculated by first 
deducing the form of the antisymmetric invariant, 

(note that it has zero matrix elements) and after choosing an embedding, performing 
coupling calculations in the canonical basis to obtain the other invariants. Thus we 
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Some selected eigenvalues of this operator have been calculated and are given in 
table 2. 

Table 2. Selected eigenvalues of T4[to1 + T6[6,6’+ T6[6i61. 

SO(4) module Eigenvalues Degeneracy 

[611 - 159734.1 50 
- 15973 1.95 1 
-159675.655 

48982.045 
49427.571 
50578.815 
51392,835 
52070.494 
53357.310 
54305.744 
56822.249 
57635.687 
58874.749 

-319392.7534 
-112177.2016 
- 11 1486.934 1 
- 1066 16.0522 
-101817.6219 
-100872.9892 

100830.1933 
100874.0939 
102192.0941 
104791.4219 
109656.7 138 
110506.9598 
1 13968.0 169 
117114.3445 

[%I -822.85714 
0~00000 

329.14286 
1152.00000 

3 
4 
5 
5 
3 
4 
3 
5 
3 
1 
4 
5 
3 

4 
4 
5 
6 
5 
4 
5 
4 
6 
5 
5 
4 
6 
1 

6 
4 
8 
2 
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We see that some of the degeneracies are higher than expected but are still 
consistent with a resolution of the branching multiplicity. In fact the pattern of the 
degeneracies indicates that the same eigenvalue is occurring for different irreps rather 
than for different multiplicity labels. 

The permutational symmetry of the 3-jm factors does not give rise to symmetries 
in the ei envalues of this operator. However we could use an operator based on the 
pair T (which would include terms such as T7[7d1, T7[7011, T7[7,3’ 

) in which case we would obtain a resolution of the multiplicity for which 
the eigenvalues occur in + and - pairs and zeros. 

15h5151 and T15[15-151 

and T7u7-31 

11. Conclusions 

We have pointed out that labelling operators for subgroups of compact Lie groups can 
be expressed in terms of irreducible tensors. Use of the irreducible tensor method 
admits simple means of enumerating invariants, predicting symmetries and choosing 
between various labelling operators. 

By considering the pentahedral subgroup of SO(4) we have been able to demon- 
strate that the branching multiplicity cannot be resolved by a commuting set of 
irreducible tensors. Our method suggests that a single linear combination of irre- 
ducible tensors ought to resolve the labelling problem, provided the linear combina- 
tion is sufficiently complicated. We conclude that the standard approach to labelling 
problems, via a set of mutually commuting operators is both inappropriate (except 
where the Hilbert space is a tensor product space) and not generally feasible. 
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